Let's look at the first advantage that high-resolution audio brings, which is higher bit depth. When you reduce the bit depth of the analog to digital conversion, you add more noise during the quantization process when it has to be converted back to analog. By increasing the bit depth, you naturally reduce the noise and thereby increase the dynamic range.
However, even with undithered 16-bits, you can get a dynamic range of 96dB, which is very close to maxing out the limits of human hearing (120dB), and the additional headroom offered by 24-bits (144dB) goes so far beyond it that it even exceeds the limitations of most equipment. In other words, you can't hear it.
Secondly, clever techniques like dithering can help reduce and shape the noise even in a 16-bit signal such that it would be inaudible to anything except precise equipment. The dynamic range of a dithered 16-bit signal can easily be made to go beyond 120dB by reducing and reshaping the noise in the audible range. This means for all practical purposes, 16-bit is perfectly adequate for human ears.
The other advantage high-resolution has is higher sampling rates. A 192kHz sampling rate means the audio can have a frequency response ceiling as high as 96kHz. As I already mentioned, humans can only hear as high as 20kHz, that too only those with perfect hearing at the prime of their life. Most people have even lower frequency responses than that.
For audio to have frequencies beyond the humanly audible range is like having a TV that shows light outside of the visible range. You can hear 96kHz sound almost as much as you can see X-ray. Which is to say, not at all.
Having to reproduce audio with such high frequencies can also put a strain on the equipment and drivers, which can introduce additional distortion. This distortion most definitely is in the audible range, which means you're distorting sound you can hear for the sound you can't hear.